3 SEM TDC CHMH (CBCS) C 5

2023

(Nov/Dec)

CHEMISTRY

(Core)

Paper: C-5

(Inorganic Chemistry)

Full Marks: 53

Pass Marks: 21

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following alternatives: 1×6=6
 - (a) Metals generally occur in their native state in nature have
 - (i) positive standard electrode potentials
 - (ii) high affinity to oxygen
 - (iii) incompletely filled d-orbitals
 - (iv) negative standard electrode potentials

(b)	W	hic	h of	the	follor	wing	is a	soft	acid?
4-1		The state of the s	u 0.	1					
****		***	. +		AGE A				
		ry i	Ag+	Carrier State					
		S. 19 S			3 . 3			() 4 · · · · · · · · · · · · · · · · · ·	
			41 ³⁺						
		ly 1	u .						
" allenge e nelenge		11 N E			• .	i i			
	6	ii) 1	Va ⁺		* 1	Fig. 184			
ing of a	(4)	4 1	, a	2 2					
			, k, .			4	16.4	§	
	fi	υ) 1	4			4 4			
100	- I	-, -	E oc just	884 4 2			. 4		

(c) Which of the following pairs is not an example of diagonal relationship?

- (i) Li-Mg
- (ii) B-Si
- (iii) Be-Al
- (iv) B-Al

(d) The noble gas most difficult to liquify is

- (i) He
- (ii) Ne
- (iii) Ar
- (iv) Kr

- (e) The structure of (NPCl₂)₄ is
 - (i) tetrahedral
 - (ii) tub-like
 - (iii) planar
 - (iv) pyramidal
- (f) The shape of XeO₃ molecule is

- (i) triangular planar
- (ii) pyramidal
- (iii) tetrahedral
- (iv) octahedral
- 2. Write short notes on the following (any two):

 2×2=4

A Promotor and the second second second

- (a) Mond's process of refining
- (b) Zone refining
- (c) Parting process

- 3. Answer the following questions (any two): 3×2=6
 - (a) What are Lewis bases? Classify different types of Lewis bases with examples.

 1+2=3
 - (b) Explain HSAB principle with suitable example. Using this principle, predict whether the following reaction is feasible or not:

 2+1=3

LiI + CsF → LiF + CsI

- (c) What is inert pair effect? Why does the inert pair effect increase down the group?

 1½+1½=3
- 4. Answer the following questions (any *five*): 2×5=10
 - (a) Which one of the following is more acidic and why?

 1+1=2

H₂S and PH₃

(b) H₃PO₂ is a good reducing agent. Why? 2

(c)	Draw	the	electronic	structure	of	H ₂ PO ₄	
	and					- P	+1=2

- (d) Lithium has dissimilarities with other alkali metals. Why?
- (e) HCO₃ ion behaves as an amphoteric substance. Why?
- (f) What is the general repeating unit in silicones? State a unique character of silicones.

 1+1=2
- **5.** Answer the following questions (any *five*): 3×5=15
 - (a) Give one method of preparation of diborane. Explain the formation of (3c-2e) bond in diborane. 1+2=3
 - (b) Write one method of preparation and structure of boron nitrides. 1+2=3
 - (c) Discuss the structural difference of diamond and graphite.

- (d) What is catenation? The catenation property is more significant in carbon than other elements. Why? 1+2=3
- (e) Explain why—
 - (i) halogens exhibit +1, +3, +5 and +7 oxidation states;
 - (ii) reaction between iron and HCl produces FeCl₂ not FeCl₃. 1½+1½=3
 - (f) Write a note on main allotropic forms of sulphur.
- **6.** Answer the following questions (any two): $3\times2=6$
 - (a) Explain the structures of XeF_4 and $XeOF_4$. $1\frac{1}{2}+1\frac{1}{2}=3$
 - (b) Give one method of preparation and one chemical property of XeF₂. 1½+1½=3
 - (c) (i) No chemical compound of He is known. Explain.
 - (ii) What are clathrates? Give example. $1+\frac{1}{2}=1\frac{1}{2}$

3

- 7. Answer the following questions (any two): 3×2=6
 - (a) What are linear and cyclic silicones?

 Give example of each. 11/2+11/2=3
 - (b) What is inorganic benzene? Why is it called inorganic benzene? 1+2=3
 - (c) What are silicones? Mention two applications of silicones. 2+1=3

* * *